Introduction to Real-Time Computing

Minsoo Ryu

RTCC Lab. at Hanyang University
What is Real-Time Computing?

- Misconceptions
 - Real-time computing is equivalent to fast computing
 - The objective of real-time computing is to minimize the response time of a given set of tasks

- Theoretical definition
 - The correctness of computing depends not only on the correctness of its logical result but also on the result delivery time
 - In addition, real-time computing must be predictable
Classification of Timing Requirements

- Three types of timing requirements
 - **Freshness** -> **deadline**
 - The time delay for data to flow through the system
 - **Separation** -> **period**
 - The time interval between two consecutive activations (completions)
 - **Correlation** -> **synchronization**
 - The time skew between several inputs to produce an output
Typical Real-Time Systems

- Automatic control systems

- Such systems monitor and control their environment

- Inevitably associated with hardware devices
 - Sensors: Collect data from the system environment
 - Actuators: Change (in some way) the system's environment

- Time is critical
 - Real-time systems MUST respond within specified times
Real-Time Control System Structure
A Simple RT Control System Model

- SISO (Single Input Single Output) control loop
Control Loop Implementation

- Pseudo code for the SISO control system

```plaintext
set timer to interrupt periodically with period T;
at each timer interrupt do
  do analog-to-digital conversion to get y;
  compute control output u;
  output u and do digital-to-analog conversion;
od
```

- **T (sampling period)**
 - Design choice between a lower bound and an upper bound

- **Timing requirements**
 - Control systems have periodicity requirements, and therefore deadline requirements to complete periodic jobs
Other Applications

☐ Air traffic and flight control
 - Hierarchy model

☐ Other applications include
 - Radar surveillance system
 - Robot control system
 - Cruise control system
Hard and Soft Real-Time Systems

- **Hard deadline**
 - A deadline miss results in a catastrophe
 - Probabilistic perspective: deadline miss probability is zero

- **Soft deadline**
 - Deadline misses are allowed, but degrades system performance
 - Probabilistic perspective: deadline miss probability is small

- **Firm deadline**
 - Completing a task after its deadline is not useful and may even be harmful
Hard and Soft Real-Time Systems

☑ Guaranteed service
 ▪ The user wants guarantees on services
 ▪ Hard real-time or soft real-time guarantees
 ▪ Hard real-time applications
 • Control systems
 • Database systems
 ▪ Soft real-time applications
 • Multimedia and network applications with service guarantees

☑ Best-effort service
 ▪ The system attempts to provide best services with no guarantees