Scheduling Algorithms for Multiprogramming in a Hard Real-time Environment

C. Liu and J. Layland
Contents

1. Introduction and Background
2. The Environment
3. A Fixed Priority Scheduling Algorithm
4. Achievable Processor Utilization
5. The Deadline Driven Scheduling Algorithm
Introduction and Background

➢ The use of computers for
 ▪ Time-critical control and monitoring of industrial processes

➢ Two scheduling algorithms are studied
 ▪ Both are priority driven and preemptive
 • The processing of any task is interrupted by a request for any higher priority task
 ▪ The first one
 • Fixed priority assignment algorithm
 ▪ The second one
 • Dynamic priority assignment
The Environment

Five assumptions

- (A1) The request for all tasks for which hard deadlines exist are periodic
- (A2) Deadlines consist of run-ability constraints only
 - Each task must be completed before the next request for it occurs
- (A3) The tasks are independent in that requests for a certain task do not depend on the initiation or the completion of requests for other tasks
- (A4) Run-time for each task is constant for that task and does not vary with time. Run-time here refers to the time which is taken by a processor to execute the task without interruption
- (A5) Any nonperiodic tasks in the system are special; they are initialization or fault-recovery routines; they displace periodic tasks while themselves are being run, and do not themselves have hard, critical deadlines
A Fixed Priority Scheduling Algorithm (1)

- **Task and scheduling model**
 - **Deadline of a request**
 - The time of the next request for the same task
 - **Overflow of a request**
 - Unfulfilled request by its deadline
 - **Feasible algorithm**
 - If tasks are scheduled so that no overflow ever occurs
 - **Response time of a request**
 - The time span between the request and the end of the response to that request
 - **Critical instant of a task**
 - An instant at which a request for that task will have the largest response time
 - **Critical time zone for a task**
 - The time interval between a critical instant and the deadline of the corresponding request of the task
A Fixed Priority Scheduling Algorithm (2)

- Theorem 1. A critical instant for any task occurs whenever the task is requested simultaneously with requests for all higher priority tasks.

- Proof.
 - Advancing the request time t_2 will not speed up the completion of τ_m.

![Diagram showing execution of τ_i between requests for τ_m.]
A Fixed Priority Scheduling Algorithm (3)

- **Important value of Theorem 1**
 - A simple direct calculation can determine whether or not a given priority assignment will yield a feasible scheduling algorithm

- **Example: two tasks \(\tau_1 \) and \(\tau_2 \)**
 - \(T_1 = 2, C_1 = 1 \)
 - \(T_2 = 5, C_2 = 1 \)
A Fixed Priority Scheduling Algorithm (4)

- The following inequalities must be met for feasibility
 - If \(\tau_1 \) is the highest priority task (method 1)
 \[
 \bigcup \frac{T_2}{T_1} C_1 + C_2 \leq T_2.
 \]
 - If \(\tau_2 \) is the highest priority task (method 2)
 \[
 C_1 + C_2 \leq T_1.
 \]
 - It follows from (2) that
 \[
 \bigcup \frac{T_2}{T_1} C_1 + \bigcup \frac{T_2}{T_1} C_2 \leq \bigcup \frac{T_2}{T_1} T_1 \leq T_2
 \]

- Whenever \(T_1 \leq T_2 \) and \(\tau_2 \) has the highest priority, Ineq.(2) implies Ineq.(1)
 - Ineq.(1) is a weaker condition
 - If a task set is schedulable by method 2, then it is also schedulable by method 1
A Fixed Priority Scheduling Algorithm (5)

- Reasonable rule of priority assignment
 - Assign priorities according to request rates, independent of run-times
 - Tasks with higher request rates will have higher priorities
- Rate-monotonic priority assignment
 - Optimum in the sense that no other fixed priority assignment rule can schedule a task set which cannot be scheduled by the rate-monotonic priority assignment

- Theorem 2. If a feasible priority assignment exists for some task set, the rate monotonic priority assignment is feasible for that task set
 - Proof. By an inter-change argument
Achievable Processor Utilization (1)

- **Utilization factor**
 - The fraction of processor time spent in the execution of the task set
 - The utilization factor is equal to one minus the fraction of idle processor time

 \[U = \sum_{i=1}^{m} \left(\frac{C_i}{T_i} \right). \]

 - Utilization factor can be improved by
 - Increasing run-times and decreasing periods
 - However, utilization factor is upper bounded by the requirement of feasibility (meeting deadlines)
 - How large the processor utilization factor can be?
Achievable Processor Utilization (2)

- **Full utilization of processor**
 - A set of tasks is said to “fully utilize” the processor if the priority assignment is feasible for the set and if an increase in the run-time of any of the tasks in the set will make the priority assignment infeasible

- **LUB (least upper bound) of utilization factor**
 - The minimum of utilization factor over all sets of tasks that fully utilize the processor
 - For all task sets whose utilization factor is below this bound, there exists a fixed priority assignment which is feasible
Achievable Processor Utilization (3)

- Schedulable Utilization Bound
Achievable Processor Utilization (4)

- Theorem 3. For a set of two tasks with fixed priority assignment, the least upper bound to the processor utilization factor is $U = 2(2^{1/2} - 1)$

- Proof. See Theorem 4
Theorem 4. For a set of m tasks with fixed priority order, and the restriction that the ratio between any two request periods is less than 2, the least upper bound to the processor utilization factor is

$$U = m(2^{1/m} - 1)$$

Proof.

1. We first show that the LUB can be found when
 - $C_1 = T_2 - T_1$, $C_k = T_{k+1} - T_k$, and
 - $C_m = T_m - 2(C_1 + C_2 + ... + C_{m-1}) = 2T_1 - T_m$

2. We then compute the LUB
Achievable Processor Utilization (6)

- We first show that the LUB can be found when
 - \(C_1 = T_2 - T_1 \), \(C_k = T_{k+1} - T_k \), and \(C_m = 2T_1 - T_m \)

- Proof (1). For \(\Delta \geq 0 \)
 - (1) Suppose that \(C_1 = T_2 - T_1 + \Delta \) and the task set S fully utilize
 - We can construct another set S' such that
 - \(C_1' = T_2 - T_1 \), \(C_2' = C_2 + \Delta \), and \(C_k' = C_k \)
 - S' fully utilize since \(C_1 + C_2 = C_1' + C_2' \)
 - \(U - U' = \Delta / T_1 - \Delta / T_2 \geq 0 \)
 - (2) Suppose that \(C_1 = T_2 - T_1 - \Delta \) and the task set S fully utilize
 - We can construct another set S' such that
 - \(C_1' = T_2 - T_1 \), \(C_2' = C_2 - 2\Delta \), and \(C_k' = C_k \)
 - S' fully utilize
 - \(U - U' = -\Delta / T_1 + 2\Delta / T_2 \geq 0 \)
 - Similarly, we can show that \(C_k = T_{k+1} - T_k \)
Achievable Processor Utilization (7)

- **Illustration**

 Case (1)

 Consider this interval

 Case (2)

 Consider this interval

 Case for LUB
Achievable Processor Utilization (8)

- We next compute the LUB

- Using the previous results, we can write

\[U = \frac{(T_2 - T_1)}{T_1} + \frac{(T_3 - T_2)}{T_2} + \ldots + \frac{(2T_1 - T_m)}{T_m} \]

\[= \frac{T_2}{T_1} - 1 + \frac{T_3}{T_2} - 1 + \ldots + \frac{2T_1}{T_m} - 1 \]

\[= \frac{T_2}{T_1} + \frac{T_3}{T_2} + \ldots + \frac{2T_1}{T_m} - m \]

- Let \(R_i = \frac{T_{i+1}}{T_i} \)

\[\frac{T_1}{T_m} = \frac{T_1}{T_m} \frac{T_{m-1} \ldots T_3 T_2}{T_{m-1} \ldots T_3 T_2} = \frac{T_{m-1} T_{m-2} \ldots T_3 T_1}{T_m T_{m-1} \ldots T_3 T_2} = \frac{1}{R_{m-1} R_{m-2} \ldots R_1} \]

\[U = R_1 + R_2 + \ldots + R_i + \ldots + 2 / (R_{m-1} \ldots R_1) - m \]
Achievable Processor Utilization (9)

- **Given**

\[U = R_1 + R_2 + \ldots + R_i + \ldots + 2/(R_{m-1}R_1) - m \]

- **To find the minimum, we solve the following**

\[\partial U / \partial R_i = 1 - 2(R_{m-1}R_1)/(R_{m-1}R_iR_1)^2 = 0 \]

\[R_i = 2/(R_{m-1}R_{m-2} \ldots R_2R_1) \]

- **This implies** \(R_1 = R_2 = \ldots = R_{m-1}, \text{ thus } R_i = 2^{1/m} \)

- **Finally it follows that**

\[U = (m-1)2^m + 2/(2^m) - m = (m-1)2^m + 2/(2^{1-m}) - m \]

\[= (m-1)2^m + 2^m - m = m(2^m - 1) \]
Achievable Processor Utilization (10)

- For $m=3$, $U = 3(2^{1/3} - 1) \approx 0.78$
- For large m, $U \approx \ln 2$

- The restriction that the largest ratio between request period less than 2 can be removed

- Theorem 5. For a set of m tasks with fixed priority order, the least upper bound to processor utilization is $m(2^{1/m} - 1)$
Achievable Processor Utilization (11)

Outline of proof of Theorem 5

- The idea is that if a set of tasks fully utilizes the processor and for some i, $i < m$
 - $T_m/T_i \geq 2$,
- then we can always construct another set of tasks that will
 - (1) fully utilize the processor,
 - (2) $T_m/T_i < 2$, and
 - (3) the utilization of the new set is less than the original one
The Deadline Driven Scheduling Algorithm

- Priorities are assigned to tasks according to the deadlines of their current requests
 - A task will be assigned the highest priority if the deadline of its current request is the nearest
 - At any instant, the task with the highest priority and yet unfulfilled request will be executed
 - This method of assigning priorities is a dynamic one

- We want to establish a necessary and sufficient condition for the feasibility of the deadline driven scheduling algorithm
Theorem 6. When the deadline driven scheduling algorithm is used to schedule a set of tasks on a processor, there is no processor idle time prior to an overflow.

Proof. Shifting a, b, .., c to t_2 leads to a contradiction.
The Deadline Driven Scheduling Algorithm

Theorem 7. For a given set of m tasks, the deadline driven scheduling algorithm is feasible if and only if
\[U = \frac{C_1}{T_1} + \frac{C_2}{T_2} + ... + \frac{C_m}{T_m} \leq 1 \]

Proof.

(1) To show the necessity, compute the total demand of computation time between \([0, T_1, T_2, ..., T_m]\):

\[
\begin{align*}
(T_2 T_3 \cdots T_m)C_1 + (T_1 T_3 \cdots T_m)C_2 + \cdots + (T_1 T_2 \cdots T_{m-1})C_m \\
(T_2 T_3 \cdots T_m)C_1 + (T_1 T_3 \cdots T_m)C_2 \\
\quad + \cdots + (T_1 T_2 \cdots T_{m-1})C_m > T_1 T_2 \cdots T_m \\
(C_1/T_1) + (C_2/T_2) + \cdots + (C_m/T_m) > 1
\end{align*}
\]
Proof of Theorem 7.

(2) To show the sufficiency, assume that the algorithm is not feasible and $U = \frac{C_1}{T_1} + \frac{C_2}{T_2} + \ldots + \frac{C_m}{T_m} \leq 1$

- There will be an overflow at $t = T$ in the interval $[0, T_1T_2\ldots T_m]$.
- There is no idle time in the interval $[0, T]$.
- Let $a_1, a_2, a_3, \ldots, b_1, b_2, b_3, \ldots$ denote the request times immediately before T.
- Let a_1, a_2, a_3, \ldots are the request times of tasks with deadlines at T.
- Let b_1, b_2, b_3, \ldots are the request times of tasks with deadlines beyond T.

The Deadline Driven Scheduling Algorithm
Proof of Theorem 7.

Two cases must be considered
- Case 1. None of the computation times of requested at $b_1, b_2, b_3, ...$ was carried out before T
- Case 2. Some of the computation times of requested at $b_1, b_2, b_3, ...$ was carried out before T
Proof of Theorem 7.

Case 1.

- The total demand of computation time in the interval $[0, T]$
 $$\left\lfloor \frac{T}{T_1} \right\rfloor C_1 + \left\lfloor \frac{T}{T_2} \right\rfloor C_2 + \cdots + \left\lfloor \frac{T}{T_m} \right\rfloor C_m$$
- Since there is no idle period
 $$\left\lfloor \frac{T}{T_1} \right\rfloor C_1 + \left\lfloor \frac{T}{T_2} \right\rfloor C_2 + \cdots + \left\lfloor \frac{T}{T_m} \right\rfloor C_m > T$$
- Thus
 $$\frac{T}{T_1}C_1 + \frac{T}{T_2}C_2 + \cdots + \frac{T}{T_m}C_m > T$$
 $$\left(\frac{C_1}{T_1} + \frac{C_2}{T_2} + \cdots + \frac{C_m}{T_m}\right) > 1$$
- This is a contradiction
The Deadline Driven Scheduling Algorithm

Proof of Theorem 7.

Case 2.

- There must exist a point T' such that none of requests at b_1, b_2, b_3, \ldots was carried out in the interval $[T', T]$.
- In other words, only those requests with deadline at or before T will be executed.
- Note that since some of the requests at b_1, b_2, b_3, \ldots can be executed until T', all those requests initiated before T' with deadlines at or before T have been fulfilled before T'.
- Therefore, the total demand of computation time in the interval $[T', T]$ is less than or equal to
 \[L(T - T')/T_1 \upharpoonright C_1 + L(T - T')/T_2 \upharpoonright C_2 + \cdots + L(T - T')/T_m \upharpoonright C_m \]
- Since an overflow occurs,
 \[L(T - T')/T_1 \upharpoonright C_1 + L(T - T')/T_2 \upharpoonright C_2 + \cdots + L(T - T')/T_m \upharpoonright C_m > T - T', \]
- \((C_1/T_1) + (C_2/T_2) + \cdots + (C_m/T_m) > 1 \), which is a contradiction.
The Deadline Driven Scheduling Algorithm

Fig. 5. Processing overflow at time T without execution of b_1 following T'.
The Deadline Driven Scheduling Algorithm

- Deadline driven scheduling algorithm is optimum
 - If a set of tasks can be scheduled by any algorithm, it can be scheduled by the deadline driven driven algorithm

- This claim comes from Theorem 7
 - If a set of tasks can be scheduled by any algorithm, their CPU utilization is no greater than one
 - Therefore, the task set can also be scheduled by the deadline driven scheduling algorithm
Quiz

1. When will a task have the largest response time under the Liu and Layland’s assumptions? (10 points)

2. What does “fully utilize” mean? (10 points)

3. Suppose that we have a set of three tasks that follow the Liu and Layland’s task model. Their attributes are given as follows. (30 points)
 - Task A: period = 2, execution time = 1
 - Task B: period = 5, execution time = 1.5
 - Task C: period = 9, execution time = x

 1) What is the execution time of Task C that makes the above task set to fully utilize the processor under the rate monotonic priority assignment? (10 points)
 2) Response time of a task is defined as the time between its arrival and completion. What is the largest response time of Task C? (10 points)
 3) What is the response time of Task C if we schedule the above tasks in a non-preemptive manner yet with the rate monotonic priority assignment? Assume that the tasks are simultaneously released. (10 points)