Scheduling Algorithms for Multiprogramming in a Hard Real-time Environment

C. Liu and J. Layland
Contents

1. Introduction and Background
2. The Environment
3. A Fixed Priority Scheduling Algorithm
4. Achievable Processor Utilization
5. The Deadline Driven Scheduling Algorithm
Introduction and Background

➢ The use of computers for
 ▪ Time-critical control and monitoring of industrial processes

➢ Two scheduling algorithms are studied
 ▪ Both are priority driven and preemptive
 • The processing of any task is interrupted by a request for any higher priority task
 ▪ The first one
 • Fixed priority assignment algorithm
 ▪ The second one
 • Dynamic priority assignment
The Environment

Five assumptions

- (A1) The request for all tasks for which hard deadlines exist are periodic
- (A2) Deadlines consist of run-ability constraints only
 - Each task must be completed before the next request for it occurs
- (A3) The tasks are independent in that requests for a certain task do not depend on the initiation or the completion of requests for other tasks
- (A4) Run-time for each task is constant for that task and does not vary with time. Run-time here refers to the time which is taken by a processor to execute the task without interruption
- (A5) Any nonperiodic tasks in the system are special; they are initialization or fault-recovery routines; they displace periodic tasks while themselves are being run, and do not themselves have hard, critical deadlines
A Fixed Priority Scheduling Algorithm (1)

- **Task and scheduling model**
 - **Deadline of a request**
 - The time of the next request for the same task
 - **Overflow of a request**
 - Unfulfilled request by its deadline
 - **Feasible algorithm**
 - If tasks are scheduled so that no overflow ever occurs
 - **Response time of a request**
 - The time span between the request and the end of the response to that request
 - **Critical instant of a task**
 - An instant at which a request for that task will have the largest response time
 - **Critical time zone for a task**
 - The time interval between a critical instant and the deadline of the corresponding request of the task
A Fixed Priority Scheduling Algorithm (2)

➢ Theorem 1. A critical instant for any task occurs whenever the task is requested simultaneously with requests for all higher priority tasks

➢ Proof.

- Advancing the request time t_2 will not speed up the completion of τ_m

![Diagram showing execution of τ, between requests for τ_m](image)
A Fixed Priority Scheduling Algorithm (3)

Important value of Theorem 1

- A simple direct calculation can determine whether or not a given priority assignment will yield a feasible scheduling algorithm

Example: two tasks τ_1 and τ_2

- $T_1 = 2, C_1 = 1$
- $T_2 = 5, C_2 = 1$
A Fixed Priority Scheduling Algorithm (4)

The following inequalities must be met for feasibility

- If τ_1 is the highest priority task (method 1)

 \[\left\lfloor \frac{T_2}{T_1} \right\rfloor C_1 + C_2 \leq T_2. \]

- If τ_2 is the highest priority task (method 2)

 \[C_1 + C_2 \leq T_1. \]

- It follows from (2) that

 \[\left\lfloor \frac{T_2}{T_1} \right\rfloor C_1 + \left\lfloor \frac{T_2}{T_1} \right\rfloor C_2 \leq \left\lfloor \frac{T_2}{T_1} \right\rfloor T_1 \leq T_2 \]

Whenever $T_1 \leq T_2$ and τ_2 has the highest priority, Ineq.(2) implies Ineq.(1)

- Ineq.(1) is a weaker condition
- If a task set is schedulable by method 2, then it is also schedulable by method 1
A Fixed Priority Scheduling Algorithm (5)

- Reasonable rule of priority assignment
 - Assign priorities according to request rates, independent of run-times
 - Tasks with higher request rates will have higher priorities

- Rate-monotonic priority assignment
 - Optimum in the sense that no other fixed priority assignment rule can schedule a task set which cannot be scheduled by the rate-monotonic priority assignment

- Theorem 2. If a feasible priority assignment exists for some task set, the rate monotonic priority assignment is feasible for that task set
 - Proof. By an inter-change argument
Achievable Processor Utilization (1)

- **Utilization factor**
 - The fraction of processor time spent in the execution of the task set
 - The utilization factor is equal to one minus the fraction of idle processor time
 - $U = \sum_{i=1}^{n} (C_i/T_i)$.
 - Utilization factor can be improved by
 - Increasing run-times and decreasing periods
 - However, utilization factor is upper bounded by the requirement of feasibility (meeting deadlines)
 - How large the processor utilization factor can be?
Achievable Processor Utilization (2)

➢ Full utilization of processor
 - A set of tasks is said to “fully utilize” the processor if the priority assignment is feasible for the set and if an increase in the run-time of any of the tasks in the set will make the priority assignment infeasible

➢ LUB (least upper bound) of utilization factor
 - The minimum of utilization factor over all sets of tasks that fully utilize the processor
 - For all task sets whose utilization factor is below this bound, there exists a fixed priority assignment which is feasible
Achievable Processor Utilization (3)

➢ Schedulable Utilization Bound
Achievable Processor Utilization (4)

- Theorem 3. For a set of two tasks with fixed priority assignment, the least upper bound to the processor utilization factor is \(U = 2(2^{1/2} - 1) \)

- Proof. See Theorem 4
Achievable Processor Utilization (5)

Theorem 4. For a set of m tasks with fixed priority order, and the restriction that the ratio between any two request periods is less than 2, the least upper bound to the processor utilization factor is

$$U = m(2^{1/m} - 1)$$

Proof.

1. We first show that the LUB can be found when
 \[C_1 = T_2 - T_1 \quad C_k = T_{k+1} - T_k \quad \text{and} \]
 \[C_m = T_m - 2(C_1 + C_2 + \ldots + C_{m-1}) = 2T_1 - T_m \]

2. We then compute the LUB
Achievable Processor Utilization (6)

We first show that the LUB can be found when
\[C_1 = T_2 - T_1, \quad C_k = T_{k+1} - T_k, \quad \text{and} \quad C_m = 2T_1 - T_m \]

Proof (1). For \(\Delta \geq 0 \)

1. Suppose that \(C_1 = T_2 - T_1 + \Delta \) and the task set \(S \) fully utilize
 - We can construct another set \(S' \) such that
 - \(C'_1 = T_2 - T_1, \quad C'_2 = C_2 + \Delta, \quad \text{and} \quad C'_k = C_k \)
 - \(S' \) fully utilize since \(C_1 + C_2 = C'_1 + C'_2 \)
 - \(U - U' = \Delta / T_1 - \Delta / T_2 \leq 0 \)

2. Suppose that \(C_1 = T_2 - T_1 - \Delta \) and the task set \(S \) fully utilize
 - We can construct another set \(S' \) such that
 - \(C'_1 = T_2 - T_1, \quad C'_2 = C_2 - 2\Delta, \quad \text{and} \quad C'_k = C_k \)
 - \(S' \) fully utilize
 - \(U - U' = -\Delta / T_1 + 2\Delta / T_2 \geq 0 \)

Similarly, we can show that \(C_k = T_{k+1} - T_k \)
Two Task Case - all fully utilize (7)

1.1/2 + 0.9/3 = 5.1/6

1/2 + 1/3 = 5/6 → LUB case!

0.9/2 + 1.2/3 = 5.1/6
Achievable Processor Utilization (8)

Illustration

Case (1) ➔

\[
\begin{align*}
&\text{\(C'_1 + C'_2 = C_1 + C_2\)} \quad \ldots \quad \text{\(C'_1 + C'_2 = C_1 + C_2\)} \\
&0 \quad T_1 \quad T_2 \quad T_3
\end{align*}
\]

To increase \(C_1\) by \(\Delta\), we need to decrease \(C_2\) by \(2\Delta\).

Case (2) ➔

\[
\begin{align*}
&\text{\(C_1 \quad C_2\)} \quad \ldots \quad \text{\(C_1\)} \\
&0 \quad T_1 \quad T_2
\end{align*}
\]

Case for LUB ➔

\[
\begin{align*}
&\text{\(C_1 \quad C_2 \quad \ldots \quad C_{m-1} \quad C_m \quad C_1 \quad C_2 \quad \ldots \quad C_{m-1}\)} \\
&0 \quad T_1 \quad T_2 \quad T_3 \quad T_{m-1}
\end{align*}
\]
Achievable Processor Utilization (9)

➢ We next compute the LUB

➢ Using the previous results, we can write

\[U = \frac{(T_2 - T_1)}{T_1} + \frac{(T_3 - T_2)}{T_2} + \ldots + \frac{(2T_1 - T_m)}{T_m} \]

\[= \frac{T_2}{T_1} - 1 + \frac{T_3}{T_2} - 1 + \ldots + 2 \frac{T_1}{T_m} - 1 \]

\[= \frac{T_2}{T_1} + \frac{T_3}{T_2} + \ldots + 2 \frac{T_1}{T_m} - m \]

➢ Let \(R_i = \frac{T_{i+1}}{T_i} \)

\[\frac{T_1}{T_m} = \frac{T_1}{T_m} \frac{T_{m-1} \ldots T_3 T_2}{T_{m-1} \ldots T_3 T_2} = \frac{T_{m-1} T_{m-2} \ldots T_3 T_1}{T_{m-1} T_{m-2} \ldots T_3 T_2} = \frac{1}{R_{m-1} R_{m-2} \ldots R_1} \]

\[U = R_1 + R_2 + \ldots + R_i + \ldots + 2 \frac{1}{(R_{m-1} \ldots R_1)} - m \]
Achievable Processor Utilization (10)

Given

\[U = R_1 + R_2 + \ldots + R_i + \ldots + 2/(R_{m-1} \ldots R_1) - m \]

To find the minimum, we solve the following

\[
\frac{\partial U}{\partial R_i} = 1 - 2(R_{m-1} \ldots R_1)/(R_{m-1} \ldots R_i \ldots R_1)^2 = 0
\]

\[R_i = 2/(R_{m-1} R_{m-2} \ldots R_2 R_1) \]

This implies \(R_1 = R_2 = \ldots = R_{m-1} \), thus \(R_i = 2^{1/m} \)

Finally it follows that

\[
U = (m-1)2^m + 2/(2^{m-1}) - m = (m-1)2^m + 2/(2^{1-1}) - m
\]

\[= (m-1)2^m + 2^m - m = m(2^m - 1) \]
Achievable Processor Utilization (11)

- For \(m = 3 \), \(U = 3(2^{1/3} - 1) \approx 0.78 \)
- For large \(m \), \(U \approx \ln 2 \)

- The restriction that the largest ratio between request period less than 2 can be removed

- Theorem 5. For a set of \(m \) tasks with fixed priority order, the least upper bound to processor utilization is \(m(2^{1/m} - 1) \)
Achievable Processor Utilization (12)

Outline of proof of Theorem 5

- The idea is that if a set of tasks fully utilizes the processor and for some i, $i < m$
 - $T_m/T_i \geq 2$,

- then we can always construct another set of tasks that will
 - (1) fully utilize the processor,
 - (2) $T_m/T_i < 2$, and
 - (3) the utilization of the new set is less than the original one
The Deadline Driven Scheduling Algorithm

- Priorities are assigned to tasks according to the deadlines of their current requests
 - A task will be assigned the highest priority if the deadline of its current request is the nearest
 - At any instant, the task with the highest priority and yet unfulfilled request will be executed
 - This method of assigning priorities is a dynamic one

- We want to establish a necessary and sufficient condition for the feasibility of the deadline driven scheduling algorithm
The Deadline Driven Scheduling Algorithm

➢ Theorem 6. When the deadline driven scheduling algorithm is used to schedule a set of tasks on a processor, there is no processor idle time prior to an overflow

➢ Proof. Shifting a, b, \ldots, c to t_2 leads to a contradiction
The Deadline Driven Scheduling Algorithm

Theorem 7. For a given set of m tasks, the deadline driven scheduling algorithm is feasible if and only if

\[U = \frac{C_1}{T_1} + \frac{C_2}{T_2} + \ldots + \frac{C_m}{T_m} \leq 1 \]

Proof.

(1) To show the necessity, compute the total demand of computation time between \([0, T_1, T_2, \ldots, T_m]\)

\[
(T_2T_3 \cdots T_m)C_1 + (T_1T_3 \cdots T_m)C_2 + \cdots + (T_1T_2 \cdots T_{m-1})C_m.
\]

\[
(T_2T_3 \cdots T_m)C_1 + (T_1T_3 \cdots T_m)C_2 + \cdots + (T_1T_2 \cdots T_{m-1})C_m > T_1T_2 \cdots T_m
\]

\[
(C_1/T_1) + (C_2/T_2) + \cdots + (C_m/T_m) > 1
\]
Proof of Theorem 7.

(2) To show the sufficiency, assume that the algorithm is not feasible and

\[U = \frac{C_1}{T_1} + \frac{C_2}{T_2} + \ldots + \frac{C_m}{T_m} \leq 1 \]

- There will be an overflow at \(t = T \) in the interval \([0, T1T2\ldots Tm]\).
- There is no idle time in the interval \([0, T]\).
- Let \(a_1, a_2, a_3, \ldots, b_1, b_2, b_3 \ldots \) denote the request times immediately before \(T \).
- Let \(a_1, a_2, a_3, \ldots \) are the request times of tasks with deadlines at \(T \).
- Let \(b_1, b_2, b_3, \ldots \) are the request times of tasks with deadlines beyond \(T \).
The Deadline Driven Scheduling Algorithm

Proof of Theorem 7.

- Two cases must be considered
 - Case 1. None of the computation times of requested at $b_1, b_2, b_3, ...$ was carried out before T
 - Case 2. Some of the computation times of requested at $b_1, b_2, b_3, ...$ was carried out before T
Proof of Theorem 7.

Case 1.

- The total demand of computation time in the interval \([0, T]\):
 \[
 \lfloor T/T_1 \rfloor C_1 + \lfloor T/T_2 \rfloor C_2 + \cdots + \lfloor T/T_m \rfloor C_m
 \]

- Since there is no idle period:
 \[
 \lfloor T/T_1 \rfloor C_1 + \lfloor T/T_2 \rfloor C_2 + \cdots + \lfloor T/T_m \rfloor C_m > T
 \]

- Thus:
 \[
 (T/T_1) C_1 + (T/T_2) C_2 + \cdots + (T/T_m) C_m > T
 \]

 \[
 (C_1/T_1) + (C_2/T_2) + \cdots + (C_m/T_m) > 1
 \]

- This is a contradiction.
The Deadline Driven Scheduling Algorithm

Proof of Theorem 7.

Case 2.

• There must exist a point T' such that none of requests at b_1, b_2, b_3, \ldots was carried out in the interval $[T', T]$.

• In other words, only those requests with deadline at or before T will be executed.

• Note that since some of the requests at b_1, b_2, b_3, \ldots can be executed until T', all those requests initiated before T' with deadlines at or before T have been fulfilled before T'.

• Therefore, the total demand of computation time in the interval $[T', T]$ is less than or equal to

$$L(T - T')/T_1 \lor C_1 + L(T - T')/T_2 \lor C_2 + \cdots + L(T - T')/T_m \lor C_m$$

• Since an overflow occurs,

$$L(T - T')/T_1 \lor C_1 + L(T - T')/T_2 \lor C_2 + \cdots + L(T - T')/T_m \lor C_m > T - T',$$

• $(C_1/T_1) + (C_2/T_2) + \cdots + (C_m/T_m) > 1$, which is a contradiction.
The Deadline Driven Scheduling Algorithm

Fig. 5. Processing overflow at time T without execution of $\{b_i\}$ following T'
Note!

➢ Task b_j cannot arrive more than once in the interval (T', T), since this means task b_j has a deadline earlier than T and must be completed before T in (T', T).

➢ Thus, there is no execution of task b_j in (T', T) and this means only tasks a_i can execute in (T', T).

➢ Let the computation time demand of all tasks a_i be X and X is less than

\[\sum_{i=1}^{m} C_i \]

- Terms for task b_j are 0

➢ $X > T - T'$ since there is a deadline miss, thus

\[\sum_{i=1}^{m} C_i \]

\[> T - T' \]
The Deadline Driven Scheduling Algorithm

- Deadline driven scheduling algorithm is optimum
 - If a set of tasks can be scheduled by any algorithm, it can be scheduled by the deadline driven driven algorithm

- This claim comes from Theorem 7
 - If a set of tasks can be scheduled by any algorithm, their CPU utilization is no greater than one
 - Therefore, the task set can also be scheduled by the deadline driven scheduling algorithm
Other Proof of Optimality

- We show that any feasible schedule can be systematically transformed to EDF schedule.
- Assume that parts of two jobs J_i and J_k are scheduled in non-EDF order:

```
  J_i  J_k
```

This can be easily resolved by swapping the jobs:

```
  J_k  J_i
```

Note that this operation cannot cause deadline miss.