
Synchronization

Minsoo Ryu

Real-Time Computing and Communications Lab.

Hanyang University

msryu@hanyang.ac.kr

2

Topics Covered

ÆWhy Synchronization?

ÆThe Critical-Section Problem

ÆSynchronization Algorithms

ÆSynchronization with Hardware Support

ÆSynchronization with OS Support

ÆClassical Synchronization Problems

Why Synchronization?

4

Why Synchronization?

ÆWe use cooperating processes or threads

ÁWant to share resources

ÁWant to do things faster

ÁWant to construct systems in a modular fashion

ÆUnfortunately, concurrent access to shared resources
may lead to non-deterministic and/or incorrect results
ÁProgram states and output may vary depending on the order

of process or thread execution

5

Revisiting the Bounded Buffer (1/2)

item nextProduced;

while (1) {

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

}

Producer Consumer

item nextConsumed;

while (1) {

while (in == out)

; /* do nothing */

nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

}

Why (in + 1) % BUFFER_SIZE ?

6

Revisiting the Bounded Buffer (2/2)

ÆThe current solution allows at most N ï1 items in
buffer at the same time

ÆCan we find a better solution to use all N buffers?
ÁLetôs introduce a new variable counter, initialized to 0 and

incremented each time a new item is added to the buffer

7

Bounded Buffer Using a Counter (1/6)

Æ Shared buffer using a counter

#define BUFFER_SIZE 10

Typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

int count = 0;

Á in: points to the next free position

Áout: points to the first full position

8

Bounded Buffer Using a Counter (2/6)

item nextProduced;

while (1) {

while (counter == BUFFER_SIZE)

; /* do nothing */

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

count++;

}

Producer Consumer

item nextConsumed;

while (1) {

while (counter == 0)

; /* do nothing */

nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

count--;

}

9

Bounded Buffer Using a Counter (3/6)

ÆThe statements

count++;

count--;

must be performed atomically

ÆAtomic operation means an operation that completes

in its entirety without interruption

10

Bounded Buffer Using a Counter (4/6)

ÆThe statement ñcount++òmay be implemented in
machine language as:

register1 = count

register1 = register1 + 1

count = register1

ÆThe statement ñcount--òmay be implemented as:

register2 = count

register2 = register2 ï1

count = register2

11

Bounded Buffer Using a Counter (5/6)

Æ If both the producer and consumer attempt to update

the buffer concurrently, the assembly language

statements may get interleaved

Æ Interleaving depends upon how the producer and

consumer processes are scheduled

12

Bounded Buffer Using a Counter (6/6)

ÆAssume count is initially 5. One interleaving of
statements is:

producer: register1 = count (register1 = 5)
producer: register1 = register1 + 1 (register1 = 6)
consumer: register2 = counter (register2 = 5)
consumer: register2 = register2 ï1 (register2 = 4)
consumer: count = register2 (counter = 4)
producer: count = register1 (counter = 6)

ÆThe value of count may be either 4 or 6, where the
correct result should be 5

